logg's; fortified with hydrogen-reduced iron) given as part of a typical Western breakfast. Geometric mean iron absorption from the fortified cereal was 14.1%. If we use this absorption value and consider, for example, Cheerios (General Mills; 8.1 mg iron per 30-g serving) or Count Chocula (General Mills; 4.5 mg iron per serving), a single serving of Cheerios will provide 1.1 mg and of Count Chocula 0.63 mg of "absorbed" iron. These quantities meet or exceed the recommended amount of absorbed iron for children up to 8 years of age.4 Thus, when used on a regular basis, ready-to-eat breakfast cereals are a reasonably good source of bioavailable iron. ## Stanley Zlotkin Professor Departments of Paediatrics and Nutritional Sciences University of Toronto Toronto, Ont. Claudia Schauer Clinical Research Project Manager Program in Metabolism Research Institute The Hospital for Sick Children Toronto, Ont. ### References - Zlotkin S. Clinical nutrition: 8. The role of nutrition in the prevention of iron deficiency anemia in infants, children and adolescents. CMAJ 2003;168(1):59-63. - Hurrell R, Bothwell T, Cook JD, Dary O, Davidsson L, Fairweather-Tait S, et al. The usefulness of elemental iron for cereal flour fortification: a SUSTAIN Task Force report. Nutr Rev 2002;60:391-406. - Fairweather-Tait SJ, Wortley GM, Teucher B, Dainty J. Iron absorption from a breakfast cereal: effects of EDTA compounds and ascorbic acid. Int J Vit Nutr Res 2001;71:117-22. - 4. Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington: National Academy Press; 2001. Competing interests: Dr. Zlotkin has been an occasional consultant to General Mills Canada. # Considering colorectal screening I was disappointed by the tone of Richard Schabas's commentary on colorectal screening. Phrases such as "It is now time to act" do not suggest thoughtful weighing of the risks involved with widespread screening initiatives. The recommendations of the National Committee on Colorectal Cancer Screening² clearly describe the potential benefits and risks of screening but also emphasize the need for adequate informed consent. For the family physician, this means ensuring that the patient knows the motivation for the test, giving advice on diet and the test procedure, explaining the concepts of falsenegative and false-positive results and their rates, and clarifying the need for colonoscopic follow-up of positive results and its associated morbidity. Anything less would be inadequate in the current Canadian legal environment. The time required for a family doctor to provide such education, follow-up and counselling can be significant. Physician resources are finite, and widespread deployment of fecal occult blood screening could be undertaken only at the expense of other medical services. Specifically, measurable increases in family physician workload, surgical consultations and colonoscopic waiting lists are predictable. Evidence-based analysis cannot effectively weigh important factors such as patient anxiety and longer waiting lists arising out of false-positive results. We fail our patients by concluding that what is not easily quantified is irrelevant. # Ted Mitchell Family Physician Hamilton, Ont. #### References - Schabas RE. Colorectal cancer screening in Canada: It's time to act [editorial]. CMAf 2003; 168(2):178-9. - National Committee on Colorectal Cancer Screening. Recommendations for population-based colorectal cancer screening. Ottawa: Health Canada; 2002. Available: www.hc-sc.gc.ca/pphb-dgspsp/publicat/nccs-cndcc/index.html (accessed 2003 Ian 30). The report of the Canadian Coordinating Office for Health Technology Assessment¹ (CCOHTA) cited in Richard Schabas's commentary on colorectal cancer screening² was not a full assessment but a feasibility study based on a limited literature search. CCOHTA undertakes such feasibility studies to determine whether to proceed with a full assessment. In this case, CCOHTA did not proceed, and the feasibility study was published electronically as a quick guide to current assessment information. We would urge caution before the initiation of a national population-based screening program for people at average risk of colorectal cancer, such as the biennial program (beginning at age 50 years and ending at age 74 years) recommended by the National Committee on Colorectal Cancer Screening (NCCCS).³ Participants should be fully informed of the risks and benefits, as outlined below. - Screening for colorectal cancer is likely to have only a modest clinical benefit, as Schabas notes.2 The NCCCS study³ estimated that for people at average risk, 1300 fecal occult blood tests and 127 colonoscopies are needed to prevent 1 colorectal cancer death, that the risk of dying from colorectal cancer is 1 in 64 for people 50 to 74 years of age (1 in 345 for those 50 to 59 years of age) if they do not participate in a screening program, that the chance of improved survival is 1 in 204 if they participate fully in screening from 50 to 74 years of age and undertake any indicated follow-up procedures (1 in 1000 for those 50 to 59 years of age) and that only 1.75 life years are gained for each case detected. - People at average risk who are unlikely to benefit from screening are asked to accept significant risks.4 The rates of complications from follow-up colonoscopy described in the NCCCS study³ (0.17% for perforations, 0.03% for hemorrhage and 0.02% for death) could very well be underestimated for various reasons,5 including screening by operators who are less experienced than those in the studies on which these rates are based. More recent data from 6 prospective studies⁵ suggest that the rate of perforation and hemorrhage combined could be double (0.4%) the rate given in the NCCCS report.3 In addition, risk of