## **Appendix A. Model Design**

## **Model components**

We developed a microsimulation policy model (https://bit.ly/3qvEJkC) of care pathways for people with MDD. A detailed description of the model and how it was developed (evidence base, source data and analyses) is under review.<sup>1</sup> In brief, the simulation model of major depression (SiMMDep) was developed with targeted inputs from key stakeholders including patient partners (LR, GL) and clinicians (one family physician (MP), one psychiatrist (CS), and one psychologist (DE)).

To populate the model, we analyzed BC administrative data for the years 2015 to 2020 for individuals in BC aged 19–99 years old who satisfied the criteria for depression.<sup>2</sup> Several data sets, including Medical Service Plan (MSP)<sup>3</sup>, Discharge Abstract Database (DAD)<sup>4</sup>, MSP Consolidation File<sup>5</sup>, Vital Statistics Deaths records<sup>6</sup>, PharmaNet<sup>7</sup>, and National Ambulatory Care (NACRS)<sup>8</sup> were linked. Using a recently validated case definition for depression (at least one hospitalization with the diagnosis of MDD, or at least two diagnoses in the physician claims within a year)<sup>2</sup>, we established an MDD cohort (newly diagnosed and prevalent MDD patients). We excluded from the cohort any patients who satisfied the diagnostic criteria for bipolar disorder, schizophrenia, and schizoaffective disorder since their treatment are very different from those for major depressive disorder (MDD).

SiMMDep was intentionally designed with a modular approach (8 different interconnected modules) to enhance flexibility (Figure A1). Each module can be revised independently of the others and tailored for different contexts. An overview of the modules is as follows:

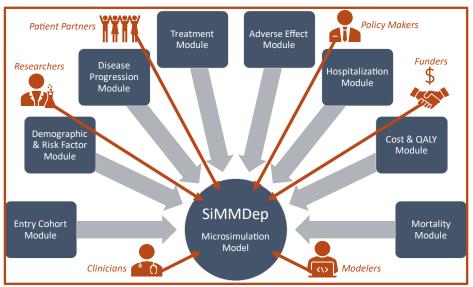



Figure A1: SiMMDep modules and contributors

1) Entry Cohort Module determines the target population represented in the model. It calculates the number of incident and prevalent cases of MDD by multiplying the incidence and prevalence rate by the size of the at-risk adult (19+) population in BC

(Table A1). The model includes the entire 2021 cohort of BC adults (age 19-99 years) with MDD eligible for pharmacological treatment (N = 194,149, mean age = 45.6).

2) Demographics Module assigns a unique set of variables to each patient. Some of the key input parameters such as current age, age of onset, sex, psychiatric comorbidity, as well as MDD history status (incident and prevalent) were estimated according to BC administrative data.<sup>3-8</sup> Condition severity for newly diagnosed and prevalent patients was extracted from Ferrari et al.<sup>9</sup> and Kessing et al.<sup>10</sup>, respectively.

Because pharmacogenetic variants can occur more or less frequently among different ancestry groups<sup>11, 12</sup>, the model assigns each patient to one of the nine geographic ancestry categories listed in the Pharmacogenomics Knowledgebase (PharmGKB)<sup>13-16</sup> (i.e., European, East Asian, Central/South Asian, American, Near Eastern, Latino, Sub-Saharan African, Oceanian, African-American/Afro-Caribbean). We utilized these nine categories, leveraging the reported prevalence of CYP2C19 and CYP2D6 metabolizer phenotypes within these geographic ancestry groups from PharmGKB and in Bousman et al.<sup>47</sup>

To establish the prevalence of each geographic ancestry group in BC, we utilized Statistics Canada data (2016 Canadian Census results)<sup>17</sup>, after matching to the PharmGKB categories (Table A1 and A2). Once the geographic ancestry group was assigned to each patient, metabolizer phenotypes for CYP2C19 and CYP2D6 were attributed accordingly (Figure A2 and Figure A3).

**3)** Disease Progression Module captures the patient's transition between the three different health states over time (MDD, Well, and Death). The duration of each cycle in the model is one week. Event probabilities sourced from the literature were converted to a one-week time frame by transforming the probabilities to a rate (prob=1-exp(-rate)), adjusting the rate to the relevant time window, and then back-calculating the probability from the rate.

| Model Parameters         | Mean                                                | Source                   |
|--------------------------|-----------------------------------------------------|--------------------------|
| MDD history status       |                                                     |                          |
| Prevalence rate          | 0.0472                                              | $MSP^3$ , $DAD^4$ ,      |
| Incidence rate           | 0.0132                                              | and MSP                  |
| Female (%)               |                                                     | Consolidation            |
| Prevalent patients       | 68%                                                 | File <sup>5</sup> (2015- |
| Newly diagnosed patients | 58%                                                 | 2020)                    |
| Age (year)               |                                                     |                          |
| Prevalent patients       |                                                     |                          |
| Female                   | Beta distribution ( $\alpha = 2.16, \beta = 2.96$ ) |                          |
| Male                     | Beta distribution ( $\alpha = 2.36, \beta = 3.24$ ) |                          |
| Newly diagnosed patients |                                                     |                          |

**Table A1:** Model input parameters for entry cohort (N. newly diagnosed = 33,104 and N. prevalent patients = 161,045) and demographic modules

| Female                                                                                                        | Beta distribution ( $\alpha = 0.36$ , $\beta = 1.77$ )                                                                  |                                       |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Male                                                                                                          | Beta distribution ( $\alpha = 0.99$ , $\beta = 2.24$ )                                                                  |                                       |
| Age of onset of prevalent patients                                                                            |                                                                                                                         |                                       |
| Female                                                                                                        | Normal distribution $(-3.77 + 0.94 \times age, 3.56)$                                                                   |                                       |
| Male                                                                                                          | Normal distribution $(-3.21 + 0.94 \times age, 3.68)$                                                                   |                                       |
| Patients with other psychiatric<br>comorbidities<br>(excluding schizophrenia, schizoaffective and<br>bipolar) |                                                                                                                         |                                       |
| Prevalent patients                                                                                            | Logit (P(comorbidity = 1)) = $-0.88 + 0.06 \times$<br>age -<br>$0.34 \times (sex = female) - 0.065 \times age at onset$ |                                       |
| Newly diagnosed patients                                                                                      | Logit (P(comorbidity = 1)) = $-2.17 + 0.02$<br>× age $-0.38 \times$ (sex = female)                                      |                                       |
| N. previous episode<br>Prevalent patients                                                                     | Median = 2                                                                                                              | Hardeveld et al., 2013 <sup>18</sup>  |
| History of a previous severe episode<br>(%)                                                                   |                                                                                                                         | Kessing et al.,<br>2008 <sup>10</sup> |
| Prevalent patients                                                                                            | 34%                                                                                                                     |                                       |
| Severity of MDD episode, newly diagnosed patients (%)                                                         |                                                                                                                         | Ferrari et al.,<br>2013 <sup>9</sup>  |
| Mild                                                                                                          | 68%                                                                                                                     |                                       |
| Moderate                                                                                                      | 19%                                                                                                                     |                                       |
| Severe                                                                                                        | 13%                                                                                                                     |                                       |
| Severity of MDD episode, prevalent patients (%)                                                               |                                                                                                                         | Kessing et al.,<br>2008 <sup>10</sup> |
| Mild                                                                                                          | 17%                                                                                                                     |                                       |
| Moderate                                                                                                      | 49%                                                                                                                     |                                       |
| Severe                                                                                                        | 34%                                                                                                                     |                                       |
| Geographic ancestry (%)                                                                                       |                                                                                                                         | Statistics<br>Canada <sup>17</sup>    |
| European                                                                                                      | 67.50%                                                                                                                  |                                       |
| East Asian                                                                                                    | 15.29%                                                                                                                  |                                       |
| Central/South Asian                                                                                           | 6.51%                                                                                                                   |                                       |
| American <sup>a</sup>                                                                                         | 5.40%                                                                                                                   |                                       |
| Near Eastern                                                                                                  | 1.95%                                                                                                                   |                                       |
| Latino                                                                                                        | 1.25%                                                                                                                   |                                       |
| Sub-Saharan African                                                                                           | 0.92%                                                                                                                   |                                       |
| Oceanian                                                                                                      | 0.73%                                                                                                                   |                                       |
| African-American/Afro-Caribbean                                                                               | 0.45%                                                                                                                   |                                       |
|                                                                                                               | opulations from North and South America; namely, An                                                                     | nerican                               |

<sup>a</sup> The 'American' category includes pre-colonial populations from North and South America; namely, American Indian, Alaska Native, First Nations, Inuit, and Métis in Canada, and Indigenous peoples of Central and South America.<sup>19</sup> MSP = Medical Service Plan; DAD = Discharge Abstract Database.

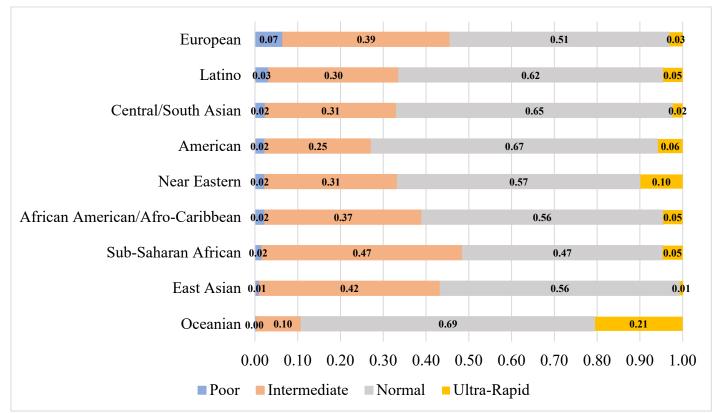
| Geographic<br>ancestry<br>categories in<br>PharmGKB<br>(used in the<br>model) | Description                                                                                                                                                                                                                                                                                          | Geographic<br>ancestry<br>categories in<br>Statistics<br>Canada | Description                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| European                                                                      | The European genetic<br>ancestry group includes<br>populations of primarily<br>European descent,<br>including European<br>Americans. We define<br>the European region as<br>extending west from the<br>Ural Mountains and<br>south to the Turkish and<br>Bulgarian border.                           | European<br>Other North<br>American*                            | British Isles origins,<br>French origins,<br>Western European origins,<br>Northern European origins,<br>Eastern European origins,<br>Southern European origins,<br>Other European origins<br>Acadian, American,<br>Canadian, New Brunswicker,<br>Newfoundlander, Nova<br>Scotian, Ontarian,<br>Quebecois, Other North<br>American origins |
| East Asian                                                                    | The East Asian genetic<br>ancestry group includes<br>populations from Japan,<br>Korea, and China, and<br>stretches from mainland<br>Southeast Asia through<br>the islands of Southeast<br>Asia. In addition, it<br>includes portions of<br>central Asia and Russia<br>east of the Ural<br>Mountains. | East and<br>Southeast Asian<br>origins                          | Burmese, Cambodian,<br>Chinese, Filipino, Hmong,<br>Indonesian, Japanese,<br>Korean, Laotian, Malaysian,<br>Mongolian, Singaporean,<br>Taiwanese, Thai, Tibetan,<br>Vietnamese, East and<br>Southeast Asian origins                                                                                                                       |
| Central/South<br>Asian                                                        | The Central and South<br>Asian genetic ancestry<br>group includes<br>populations from<br>Pakistan, Sri Lanka,<br>Bangladesh, India, and<br>ranges from Afghanistan<br>to the western border of<br>China.                                                                                             | South Asian                                                     | Bangladeshi, Bengali,<br>Bhutanese, East Indian,<br>Goan, Gujarati, Kashmiri,<br>Nepali, Pakistani, Punjabi,<br>Sinhalese, Sri Lankan,<br>Tamil, south Asian origins                                                                                                                                                                      |

**Table A2:** Matching geographic ancestry groups between PharmGKB (used in the model) and

 Statistics Canada

| American     | American Indian, Alaska<br>Native, First Nations,<br>Inuit, and Métis in<br>Canada, and Indigenous<br>peoples of Central and<br>South America.                                                                                                                                                                                                                                                                                                                                                                                                                            | North American<br>Aboriginal                | First Nations (North<br>American Indian), Inuit,<br>Metis                                                                                                                                                                                                               |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Near Eastern | The Near Eastern<br>genetic ancestry group<br>encompasses<br>populations from<br>northern Africa, the<br>Middle East, and the<br>Caucasus. It includes<br>Turkey and African<br>nations north of the<br>Saharan Desert.                                                                                                                                                                                                                                                                                                                                                   | West Central<br>Asian and<br>Middle Eastern | Afghan, Arab, Armenian,<br>Assyrian, Azerbaijani,<br>Georgian, Hazara, Iranian,<br>Iraqi, Israeli, Jordanian,<br>Kazah, Kurd, Kuwaiti,<br>Kyrgyz, Lebanese,<br>Palestinian, Pashtun, Saudi<br>Arabian, Syrian, Tajik, Tatar,<br>Turk, Turkmen, Uighur,<br>Uzbek, Yemeni |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | North African**                             | Algerian, Berber, Coptic,<br>Egyptian, Libyan, Maure,<br>Moroccan, Tunisian,                                                                                                                                                                                            |
| Latino       | The Latino genetic<br>ancestry group is not<br>defined by an exclusive<br>geographic region, but<br>includes individuals of<br>Mestizo descent,<br>individuals from Latin<br>America, and self-<br>identified Latino<br>individuals in the United<br>States. Like the African<br>American/Afro-<br>Caribbean group, the<br>admixture in this<br>population creates a<br>unique genetic pattern<br>compared to any of the<br>discrete geographic<br>regions, with individuals<br>reflecting mixed Native<br>and Indigenous<br>American, European,<br>and African ancestry. | Latin; Central<br>and South<br>American     | Arawak, Argentinian,<br>Belizean, Bolivian,<br>Brazilian, Chilean,<br>Colombian, Costa Rican,<br>Ecuadorian, Guatemalan,<br>Guyanese, Hispanic,<br>Honduran, Maya, Mexican,<br>Nicaraguan, Panamanian,<br>Paraguayan, Peruvian,<br>Salvadorian,                         |

Appendix 1, as submitted by the authors. Appendix to: Ghanbarian S, Wong GWK, Bunka M, et al. Cost-effectiveness of pharmacogenomicguided treatment for major depression. *CMAJ* 2023. doi: 10.1503/cmaj.221785. Copyright © 2023 The Author(s) or their employer(s). To receive this resource in an accessible format, please contact us at cmajgroup@cmaj.ca.


| Sub-Saharan<br>African                 | The Sub-Saharan<br>African genetic ancestry<br>group includes<br>individuals from all<br>regions in Sub-Saharan<br>Africa, including<br>Madagascar.                                                                                                                                                          | Sub-Saharan<br>African | Central and West African<br>origins, Sub-Saharan African<br>origins (including Sudanese<br>and Dinka), Southern and<br>East African origins, other<br>African origins                                                                                                       |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oceanian                               | The Oceanian genetic<br>ancestry group includes<br>pre-colonial populations<br>of the Pacific Islands,<br>including Hawaii,<br>Australia, New Zealand<br>and Papua New Guinea.                                                                                                                               | Oceanian               | Australian, New Zealander,<br>Pacific Islands origin                                                                                                                                                                                                                        |
| African<br>American/Afro-<br>Caribbean | Individuals in the<br>African American/Afro-<br>Caribbean genetic<br>ancestry group reflect<br>the extensive admixture<br>between African,<br>European, and<br>Indigenous ancestries<br>and, as such, display a<br>unique genetic profile<br>compared to individuals<br>from each of those<br>regions alone. | Caribbean              | Antiguan, Bahamian,<br>Barbadian, Bermudan, Carib,<br>Cuban, Dominican,<br>Grenadian, Guadeloupean,<br>Haitian, Jamaican,<br>Kittitian/Nevisian,<br>Martinican, Montserratian,<br>Puerto Rican, St. Lucian,<br>Trinidadian, Vincentian,<br>West Indian, Caribbean<br>origin |

\* The number for other North American origins was added to European category. \*\* The count for individuals of North African origin, excluding those from Sudan and the Dinka populations (as these regions fall under the sub-Saharan category), was included in the Near Eastern category.

Statistics Canada (2016 Canadian Census results)<sup>17</sup> included an extra category named "other Asian," and the figures within this category were distributed equally among three other Asian categories (i.e., East Asian, South Asian, and West Central/Middle Eastern).



**Figure A2:** CYP2C19 metabolizer phenotype frequencies for the different ethnographic groups, sourced from published litrature<sup>12</sup> and PharmGKB.<sup>13-16</sup> Note: The 'American' category includes pre-colonial populations from North and South America; namely, American Indian, Alaska Native, First Nations, Inuit, and Métis in Canada, and Indigenous peoples of Central and South America.<sup>19</sup>



**Figure A3:** CYP2D6 metabolizer phenotype frequencies for the different ethnographic groups, sourced from published litrature<sup>12</sup> and PharmGKB.<sup>13-16</sup> Note: The 'American' category includes pre-colonial populations from North and South America; namely, American Indian, Alaska Native, First Nations, Inuit, and Métis in Canada, and Indigenous peoples of Central and South America.<sup>19</sup>

4) Treatment Module includes five different treatment pathways for patients with MDD in BC (Figure 2). These pathways were designed based on a combination of the CANMAT 2016 guidelines<sup>20</sup> and several meetings with clinical experts and patient partners.<sup>21</sup> Each pathway includes various treatment options. In total, each patient has up to six different treatment options: 1) Mono-pharmacotherapy, 2) Double pharmacotherapy, 3) Combination of mono-pharmacotherapy and psychotherapy, 4) Combination of double pharmacotherapy and psychotherapy, 5) Combination of mono-pharmacotherapy and electroconvulsive therapy (ECT), 6) Combination of double-pharmacotherapy and ECT (Table A3).

In each pharmacological treatment, the model selects medication for each patient based on 1) CANMAT 2016 guidelines<sup>20</sup>, 2) the patient's antidepressant history, which is recorded in the model, and 3) the patient's PGx test results (if available) using "Sequence 2 Script" tool.<sup>22</sup> A frequency distribution of antidepressant prescriptions for prevalent and newly diagnosed patients was created from BC administrative data, and then this distribution was fitted for each treatment pathway (Table A4). When assigning a new medication, the model excludes medications that have previously caused an adverse effect or did not result in full symptom remission for the patient (i.e., ineffective). Then,

the model re-normalizes the medication distribution based on the antidepressants that can still be prescribed, and selects one based on the distribution of antidepressant prescriptions in BC. The model also considers and avoids medication-medication interactions. For individuals who undergo PGx testing, the model implements prescribing recommendations based on their CYP2D6 and CYP2C19 metabolizer phenotypes. We established a compilation of suitable medications for each patient, guided by Clinical Pharmacogenomics Implementation Consortium (CPIC) guidelines<sup>23-25</sup> and the Sequence2Script tool.<sup>22</sup> To encompass all feasible combinations of CYP2D6 and CYP2C19 metabolizer phenotypes, the model excludes medications contraindicated for both phenotypes separately, subsequently assembling a selection of viable treatment options. Ultimately, the model assigns a medication from this refined list, using a normalized probability distribution to accommodate any eliminated medications.

| Parameters                              | Mean                       | Source                                                                      |  |  |  |  |
|-----------------------------------------|----------------------------|-----------------------------------------------------------------------------|--|--|--|--|
| Probability of full remission           |                            |                                                                             |  |  |  |  |
| Mono-pharmacotherapy                    | Drug-specific<br>0.23-0.37 | Cipriani et al., 2018 <sup>26</sup>                                         |  |  |  |  |
| Double-pharmacotherapy                  | Drug-specific<br>0.16-0.42 | Komossa et al., 2010 <sup>27</sup>                                          |  |  |  |  |
| Pharmacotherapy & psychotherapy         | 0.28                       | Wiles et al., 2013 <sup>28</sup>                                            |  |  |  |  |
| Pharmacotherapy & ECT                   | 0.39                       | Ontario HTA (ECT) <sup>29</sup>                                             |  |  |  |  |
| Probability of partial remission        |                            |                                                                             |  |  |  |  |
| Mono-pharmacotherapy                    | Drug-specific<br>0.17-0.25 | Calculated based on<br>Cipriani et al., 2018 <sup>26</sup>                  |  |  |  |  |
| Pharmacotherapy & psychotherapy         | 0.18                       | Calculated based on Wiles et al., 2013 <sup>28</sup>                        |  |  |  |  |
| Probability of total discontinuation    |                            |                                                                             |  |  |  |  |
| Mono-pharmacotherapy                    | Drug-specific<br>0.26-0.4  | Cipriani et al., 2018 <sup>26</sup>                                         |  |  |  |  |
| Double-pharmacotherapy                  | Drug-specific<br>0.14-0.23 | Komossa et al., 2010 <sup>27</sup>                                          |  |  |  |  |
| Pharmacotherapy & psychotherapy         | Drug-specific<br>0.14-0.4  | Cipriani et al., 2018 <sup>26</sup> &<br>Komossa et al., 2010 <sup>27</sup> |  |  |  |  |
| Pharmacotherapy & ECT                   | Drug-specific<br>0.14-0.4  | Cipriani et al., 2018 <sup>26</sup> &<br>Komossa et al., 2010 <sup>27</sup> |  |  |  |  |
| Probability of discontinuation due to a | adverse event              |                                                                             |  |  |  |  |
| Mono-pharmacotherapy                    | Drug-specific<br>0.05-0.2  | Cipriani et al., 2018 <sup>26</sup>                                         |  |  |  |  |
| Double-pharmacotherapy                  | Drug-specific<br>0.02-0.12 | Komossa et al., 2010 <sup>27</sup>                                          |  |  |  |  |
| Pharmacotherapy & psychotherapy         | Drug-specific              | Cipriani et al., 2018 <sup>26</sup> &                                       |  |  |  |  |

Table A3: Model input parameters for treatment and adverse event modules

|                                       | 0.02-0.2                                                                                                        | Komossa et al., 2010 <sup>27</sup>    |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Pharmacotherapy & ECT                 | Drug-specific                                                                                                   | Cipriani et al., 2018 <sup>26</sup> & |
| 15                                    | 0.02-0.2                                                                                                        | Komossa et al., 2010 <sup>27</sup>    |
| Recurrence                            |                                                                                                                 | · · · · · · · · · · · · · · · · · · · |
| Baseline probability of recurrence    | 0.158                                                                                                           | Calculated based on                   |
| in maintenance phase                  |                                                                                                                 | Hardeveld et al., 2013 <sup>18</sup>  |
| (9 months after remission)            |                                                                                                                 |                                       |
| Baseline probability of recurrence in | "Well" state                                                                                                    |                                       |
| Year 1                                | 0.014                                                                                                           |                                       |
| Year 2                                | 0.012                                                                                                           |                                       |
| Year 3-5                              | 0.017                                                                                                           |                                       |
| Year 6-10                             | 0.012                                                                                                           |                                       |
| Year 11-20                            | 0.011                                                                                                           |                                       |
| Risk modifier                         | 0.96 <sup>(age-age<sub>onset</sub>)</sup> × 1.68 <sup>MDD_history</sup><br>× 1.91 <sup>history_severe_MDD</sup> | Hardeveld et al., 2013 <sup>18</sup>  |
| Clinical efficacy of PGx testing      |                                                                                                                 |                                       |
| (Intervention vs. current SoC)        |                                                                                                                 |                                       |
| Risk ratio of full remission          | 1.46 (1.02; 2.08)                                                                                               | Bunka et al., 2023 <sup>30</sup>      |
| Risk ratio of partial remission       | 1.2 (0.96; 1.51)                                                                                                | Calculated based on Bunka et          |
|                                       |                                                                                                                 | al., 2023 <sup>30</sup>               |
| Risk ratio of total discontinuation   | 0.89 (0.78; 1.01)                                                                                               | Bunka et al., 2023 <sup>30</sup>      |
| Risk ratio of discontinuation due     | 0.43 (0.16; 1.17)                                                                                               | Calculated based on Bunka et          |
| to adverse effect                     |                                                                                                                 | al., 2023 <sup>30</sup>               |
| <b>Note:</b> $SoC = Standard of care$ |                                                                                                                 |                                       |

**Note:** SoC = Standard of care

**Table A4:** Medications included in the model and their prescription frequency distributions for newly diagnosed and prevalent patients, based on BC administrative data (MSP<sup>3</sup>, DAD<sup>4</sup>, PharmaNet<sup>7</sup>).

|          | Medication     | Medication Class                         | Prevalent<br>patients (%) | Newly diagnosed<br>patients (1 <sup>st</sup> year after<br>diagnosis; %) |
|----------|----------------|------------------------------------------|---------------------------|--------------------------------------------------------------------------|
| 1st line | Agomelatine    | MT1 and MT2 agonist; 5-HT2<br>antagonist | 0.00                      | 0.00                                                                     |
|          | Bupropion      | NDRI                                     | 0.00<br>6.56              | 0.00<br>5.68                                                             |
|          | Citalopram     | SSRI                                     | 9.19                      | 8.72                                                                     |
|          | Desvenlafaxine | SNRI                                     | 1.89                      | 1.00                                                                     |

|                      | Duloxetine      | SNRI                             | 3.10                                    | 2.08                        |
|----------------------|-----------------|----------------------------------|-----------------------------------------|-----------------------------|
|                      | Escitalopram    | SSRI                             | 24.04                                   | 32.33                       |
|                      | Fluoxetine      | SSRI                             | 5.51                                    | 4.57                        |
|                      | Fluvoxamine     | SSRI                             | 0.4                                     | 0.30                        |
|                      |                 | a2-Adrenergic agonist; 5-HT2     |                                         |                             |
|                      | Mianserin       | antagonist                       | 0.00                                    | 0.00                        |
|                      | Milnosinnon     | SNRI                             | 0.00                                    | 0.00                        |
|                      | Milnacipran     | a2-Adrenergic agonist; 5-HT2     |                                         | 0.00                        |
|                      | Mirtazapine     | antagonist                       | 3.73                                    | 5.28                        |
|                      | Paroxetine      | SSRI                             | 3.29                                    | 2.06                        |
|                      | Sertraline      | SSRI                             | 12.01                                   | 14.16                       |
|                      | Venlafaxine     | SNRI                             | 12.29                                   | 7.49                        |
|                      | Vortioxetine    | SMS                              | 1.73                                    | 1.72                        |
| 2 <sup>nd</sup> line | Amitriptyline   | TCA                              | 3.57                                    | 2.90                        |
|                      | Clomipramine    | SNRI                             | 0.23                                    | 0.06                        |
|                      | Levomilnacipran | Reversible inhibitor of MAO-A    | 0.10                                    | 0.06                        |
|                      | Moclobemide     | Atypical antipsychotic           | 0.00                                    | 0.00                        |
|                      | Quetiapine      | Irreversible MAO-B inhibitor     | 2.82                                    | 2.68                        |
|                      | Selegiline      | Serotonin reuptake inhibitor; 5- | 0.00                                    | 0.00                        |
|                      | 0               | HT2 antagonist                   |                                         |                             |
|                      | Trazodone       | Saratanin rauntaka inhihitar 5   | 9.43                                    | 8.84                        |
|                      | Theorem         | Serotonin reuptake inhibitor; 5- | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                             |
|                      |                 | HT1A partial agonist             |                                         |                             |
|                      | Vilazodone      | TCA                              | 0.08                                    | 0.07                        |
| 3 <sup>rd</sup> line | Phenelzine      | Irreversible MAO inhibitor       | 0.00                                    | 0.00                        |
|                      |                 | Noradrenaline reuptake           |                                         |                             |
|                      | Reboxetine      | inhibitor                        | 0.00                                    | 0.00                        |
|                      | Tranylcypromine | TCA                              | 0.00                                    | 0.00                        |
|                      |                 |                                  |                                         | Newly diagnosed             |
|                      |                 |                                  | <b>D</b>                                | patients                    |
|                      | Adjunctive      |                                  | Prevalent                               | (1 <sup>st</sup> year after |
| 1 <sup>st</sup> line | Agent           | 2nd-generation antipsychotic     | patients                                | diagnosis)                  |
| 1 11110              | Aripiprazole    | Atypical antipsychotic           | 6.60                                    | 4.06                        |
|                      | Quetiapine      | 2nd-generation antipsychotic     | 31.03                                   | 39.30                       |
| 2 <sup>nd</sup> line | Risperidone     | 2nd-generation antipsychotic     | 6.08                                    | 8.03                        |
| 2 11110              | Brexpiprazole   | NDRI                             | 0.00                                    | 0.00                        |
|                      | Bupropion       |                                  | 35.44                                   | 25.02                       |
|                      | Lithium         | Mood stabilizer                  | 1.06                                    | 0.76                        |
|                      | Mianserin       | a2-Adrenergic agonist; 5-HT2     | 0.00                                    | 0.00                        |
|                      |                 | antagonist                       |                                         |                             |

|                      | Mirtazapine  | a2-Adrenergic agonist; 5-HT2<br>antagonist | 16.44 | 19.30 |
|----------------------|--------------|--------------------------------------------|-------|-------|
|                      | Modafinil    | Stimulant                                  | 0.00  | 0.00  |
|                      | Olanzapine   | Antipsychotic                              | 1.89  | 2.91  |
|                      | Liothyronine | Thyroid hormone                            | 1.29  | 0.63  |
| 3 <sup>rd</sup> line | Ziprasidone  | Antipsychotic                              | 0.00  | 0.00  |
|                      | Ketamine     | Anesthetic                                 | 0.00  | 0.00  |
|                      | Desipramine  | TCA                                        | 0.17  | 0.00  |

**Note:** MT= Melatonin receptor; NDRI= norepinephrine–dopamine reuptake inhibitor; SSRI= selective serotonin reuptake inhibitor; SNRI= serotonin and norepinephrine reuptake inhibitor; SMS= serotonin modulator and simulator; TCA= tricyclic antidepressant; MAO= monoamine oxidase; MSP = Medical Service Plan; DAD = Discharge Abstract Database.

Table A1: Medication selection based on CYP2C19 metabolizer phenotypes

|                      | Medication      | Poor | Intermediate | Normal | Rapid | Ultrarapid |
|----------------------|-----------------|------|--------------|--------|-------|------------|
|                      | Agomelatine     | 1    | 1            | 1      | 1     | 1          |
|                      | Bupropion       | 1    | 1            | 1      | 1     | 1          |
|                      | Citalopram      | 0    | 1            | 1      | 0     | 0          |
|                      | Desvenlafaxine  | 1    | 1            | 1      | 1     | 1          |
|                      | Duloxetine      | 1    | 1            | 1      | 1     | 1          |
| 1 <sup>st</sup> line | Escitalopram    | 0    | 1            | 1      | 0     | 0          |
|                      | Fluoxetine      | 1    | 1            | 1      | 1     | 1          |
|                      | Fluvoxamine     | 1    | 1            | 1      | 1     | 1          |
|                      | Mianserin       | 1    | 1            | 1      | 1     | 1          |
|                      | Milnacipran     | 1    | 1            | 1      | 1     | 1          |
|                      | Mirtazapine     | 1    | 1            | 1      | 1     | 1          |
|                      | Paroxetine      | 1    | 1            | 1      | 1     | 1          |
|                      | Sertraline      | 0    | 1            | 1      | 1     | 1          |
|                      | Venlafaxine     | 1    | 1            | 1      | 1     | 1          |
|                      | Vortioxetine    | 1    | 1            | 1      | 1     | 1          |
| 2 <sup>nd</sup> line | Amitriptyline   | 0    | 1            | 1      | 0     | 0          |
|                      | Clomipramine    | 0    | 1            | 1      | 0     | 0          |
|                      | Levomilnacipran | 1    | 1            | 1      | 1     | 1          |
|                      | Moclobemide     | 1    | 1            | 1      | 1     | 1          |
|                      | Quetiapine      | 1    | 1            | 1      | 1     | 1          |
|                      | Selegiline      | 1    | 1            | 1      | 1     | 1          |
|                      | Trazodone       | 1    | 1            | 1      | 1     | 1          |
|                      | Vilazodone      | 1    | 1            | 1      | 1     | 1          |
| 3 <sup>rd</sup> line | Phenelzine      | 1    | 1            | 1      | 1     | 1          |
|                      | Reboxetine      | 1    | 1            | 1      | 1     | 1          |
|                      | Tranylcypromine | 1    | 1            | 1      | 1     | 1          |

|                      | Adjunctive    |      |              |        |       |            |
|----------------------|---------------|------|--------------|--------|-------|------------|
|                      | Agent         | Poor | Intermediate | Normal | Rapid | Ultrarapid |
| 1 <sup>st</sup> line | Aripiprazole  | 1    | 1            | 1      | 1     | 1          |
|                      | Quetiapine    | 1    | 1            | 1      | 1     | 1          |
|                      | Risperidone   | 1    | 1            | 1      | 1     | 1          |
| 2 <sup>nd</sup> line | Brexpiprazole | 1    | 1            | 1      | 1     | 1          |
|                      | Bupropion     | 1    | 1            | 1      | 1     | 1          |
|                      | Lithium       | 1    | 1            | 1      | 1     | 1          |
|                      | Mianserin     | 1    | 1            | 1      | 1     | 1          |
|                      | Mirtazapine   | 1    | 1            | 1      | 1     | 1          |
|                      | Modafinil     | 1    | 1            | 1      | 1     | 1          |
|                      | Olanzapine    | 1    | 1            | 1      | 1     | 1          |
|                      | Liothyronine  | 1    | 1            | 1      | 1     | 1          |
| 3 <sup>rd</sup> line | Ziprasidone   | 1    | 1            | 1      | 1     | 1          |
|                      | Ketamine      | 1    | 1            | 1      | 1     | 1          |
|                      | Desipramine   | 1    | 1            | 1      | 1     | 1          |

**Note:** Value of "1" indicates the suitability of the medication for the corresponding metabolizer phenotype, while a value of "0" indicates the medication's inappropriateness.

|                      | Medication      | Poor | Intermediate | Normal | Ultrarapid |
|----------------------|-----------------|------|--------------|--------|------------|
| 1 <sup>st</sup> line | Agomelatine     | 1    | 1            | 1      | 1          |
|                      | Bupropion       | 1    | 1            | 1      | 1          |
|                      | Citalopram      | 1    | 1            | 1      | 1          |
|                      | Desvenlafaxine  | 1    | 1            | 1      | 1          |
|                      | Duloxetine      | 1    | 1            | 1      | 1          |
|                      | Escitalopram    | 1    | 1            | 1      | 1          |
|                      | Fluoxetine      | 1    | 1            | 1      | 1          |
|                      | Fluvoxamine     | 0    | 1            | 1      | 1          |
|                      | Mianserin       | 1    | 1            | 1      | 1          |
|                      | Milnacipran     | 1    | 1            | 1      | 1          |
|                      | Mirtazapine     | 1    | 1            | 1      | 1          |
|                      | Paroxetine      | 0    | 1            | 1      | 0          |
|                      | Sertraline      | 1    | 1            | 1      | 1          |
|                      | Venlafaxine     | 0    | 0            | 1      | 1          |
|                      | Vortioxetine    | 0    | 1            | 1      | 1          |
| 2 <sup>nd</sup> line | Amitriptyline   | 0    | 0            | 1      | 0          |
|                      | Clomipramine    | 0    | 0            | 1      | 0          |
|                      | Levomilnacipran | 1    | 1            | 1      | 1          |
|                      | Moclobemide     | 1    | 1            | 1      | 1          |
|                      | Quetiapine      | 1    | 1            | 1      | 1          |

## Table A6: Medication selection based on CYP2D6 metabolizer phenotypes

|                      | Selegiline       | 1    | 1            | 1      | 1          |
|----------------------|------------------|------|--------------|--------|------------|
|                      | Trazodone        | 1    | 1            | 1      | 1          |
|                      | Vilazodone       | 1    | 1            | 1      | 1          |
| 3 <sup>rd</sup> line | Phenelzine       | 1    | 1            | 1      | 1          |
|                      | Reboxetine       | 1    | 1            | 1      | 1          |
|                      | Tranylcypromine  | 1    | 1            | 1      | 1          |
|                      | Adjunctive Agent | Poor | Intermediate | Normal | Ultrarapid |
| 1 <sup>st</sup> line | Aripiprazole     | 0    | 1            | 1      | 1          |
|                      | Quetiapine       | 1    | 1            | 1      | 1          |
|                      | Risperidone      | 0    | 1            | 1      | 0          |
| 2 <sup>nd</sup> line | Brexpiprazole    | 0    | 1            | 1      | 1          |
|                      | Bupropion        | 1    | 1            | 1      | 1          |
|                      | Lithium          | 1    | 1            | 1      | 1          |
|                      | Mianserine       | 1    | 1            | 1      | 1          |
|                      | Mirtazapine      | 1    | 1            | 1      | 1          |
|                      | Modafinil        | 1    | 1            | 1      | 1          |
|                      | Olanzapine       | 1    | 1            | 1      | 1          |
|                      | Liothyronine     | 1    | 1            | 1      | 1          |
| 3 <sup>rd</sup> line | Ziprasidone      | 1    | 1            | 1      | 1          |
|                      | Ketamine         | 1    | 1            | 1      | 1          |
|                      | Desipramine      | 0    | 0            | 1      | 0          |

**Note:** Value of "1" indicates the suitability of the medication for the corresponding metabolizer phenotype, while a value of "0" indicates the medication's inappropriateness.

- 5) Adverse Effect Module assigns treatment discontinuation due to a cause, such as medication side effects. This module is flexibly coded to allow for discontinuation due to "other cause" to be modeled if/when data becomes available (e.g. discontinuation due to out-of-pocket costs, stigma, etc.; Table A3).
- 6) Hospitalization Module assigns the weekly probability of hospitalization to patients and counts the number of all-cause hospital admissions (Table A7).

| Table A7: All-cause | hospitalization rate ( | (per 100 patient-years) |
|---------------------|------------------------|-------------------------|
|---------------------|------------------------|-------------------------|

|                              | Rate of all-cause hospitalization<br>(per 100 patient-years) | Source                                     |
|------------------------------|--------------------------------------------------------------|--------------------------------------------|
| Newly diagnosed patients     | 17.00                                                        | $MSP^3$ , $DAD^4$ , PharmaNet <sup>7</sup> |
| Prevalent Patients           | 14.24                                                        | (2015-2020)                                |
| Patients with refractory MDD | 17.81                                                        |                                            |
| General population           | 7.00                                                         | CIHI 2021 <sup>31</sup>                    |

**Note:** MSP = Medical Service Plan; DAD = Discharge Abstract Database.

7) Cost and QALY Module captures all treatment-related costs and benefits from the public payer perspective.

• Cost

As patients go through different health states and events in the model, we estimate the costs and resources associated with them (Table A8).

• Utility

All patients enter the model with an MDD-specific utility value that is associated with their illness, stratified by their health state, the severity of MDD, and remission status (Table A9).

8) Mortality Module tabulates death due to any cause, including those specific to MDD. We applied a weekly age- and sex-specific mortality rate based on the annual rate we sourced from Statistics Canada and risk ratios that we sourced from the literature<sup>32-35</sup>(Table A10).

| Model input parameters                                             | Mean                      | Note                                                                                                  | Source                                                                                                      |
|--------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Pharmacogenomic test                                               | \$738                     | Including appointments<br>for test request and results<br>review                                      | Maruf 2020 <sup>36</sup> and MSC Payment schedule, 2020 <sup>37</sup>                                       |
| MDD treatment                                                      |                           |                                                                                                       |                                                                                                             |
| Psychotherapy<br>Individual Cognitive<br>Behavioral therapy (ICBT) | \$236.5                   | Weekly for 12 weeks                                                                                   | MSC payment schedule <sup>37</sup> and<br>average salary of healthcare<br>professionals in BC <sup>38</sup> |
| Pharmacotherapy                                                    | Drug-specific<br>\$0-\$17 | Weekly medication-<br>specific costs paid by<br>pharma care                                           | PharmaNet <sup>7</sup> (2015-2020)                                                                          |
| Electroconvulsive therapy<br>(ECT)                                 | \$3,748.14                | Weekly for 7 weeks                                                                                    | CIHI <sup>39</sup>                                                                                          |
| <b>Refractory MDD care</b>                                         | \$102                     | Weekly costs including all<br>MDD and non-MDD<br>treatment costs, inpatient<br>and outpatients' costs | MSP <sup>3</sup> , DAD <sup>4</sup> , PharmaNet <sup>7</sup> and<br>NACRS <sup>8</sup> (2015-2020)          |
| All-cause hospitalization                                          |                           | · · · · · · · · · · · · · · · · · · ·                                                                 |                                                                                                             |
| Newly diagnosed patients                                           | \$11,838                  |                                                                                                       | DAD <sup>4</sup> (2015-2020)                                                                                |
| <b>Prevalent Patients</b>                                          | \$10,241                  |                                                                                                       |                                                                                                             |
| General population                                                 | \$8,153                   |                                                                                                       | Estimated using CIHI 2021 <sup>31</sup><br>and DAD <sup>4</sup> (2015-2020)                                 |
| Monitoring and assessment                                          |                           |                                                                                                       |                                                                                                             |
| Drug management costs                                              | \$4.10-\$15.94            | Weekly for<br>12-weeks                                                                                | Micro-costing approach based on expert opinions,                                                            |

 Table A8: Costs used in the economic model (2020 CAD)

| Referral costs                                                                                                   | \$68                                                  | At the beginning of any episode                                                                                 | the MSC payment schedule <sup>37</sup> ,                                 |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Monitoring after<br>discontinuation of<br>treatment, no adverse event                                            | \$6.66-\$12.04                                        | Weekly for 48 weeks                                                                                             | and average salary of<br>healthcare professionals in<br>BC <sup>38</sup> |
| Monitoring after remission<br>Monitoring after no<br>remission<br>Assessment to step up care                     | \$7.03-\$62.50<br>\$20.47-<br>\$441.24<br>\$340-\$538 | Weekly for 40-104 weeks<br>One-time cost before<br>stepping up care<br>One-time cost before<br>stepping up care |                                                                          |
| Follow up in the 'Well'<br>health state<br>Patients on antidepressant<br>Patients no longer on<br>antidepressant | \$7.13-\$22.26<br>\$1.47-\$10.16                      | Weekly<br>Weekly for 52 weeks                                                                                   |                                                                          |

Note: MSP = Medical Service Plan; DAD = Discharge Abstract Database; NACRS = National Ambulatory Care.

| Health state     | Utility           | Mean       | 95% CI | 95% CI | Source                             |
|------------------|-------------------|------------|--------|--------|------------------------------------|
|                  |                   |            | lb     | ub     |                                    |
| MDD (episodic)   | Acute phase       |            |        |        |                                    |
|                  | Mild MDD          | 0.57       | 0.54   | 0.61   | Kolovos et al., 2017 <sup>40</sup> |
|                  | Moderate MDD      | 0.52       | 0.49   | 0.56   |                                    |
|                  | Severe MDD        | 0.39       | 0.35   | 0.43   |                                    |
|                  | Maintenance Phase | 0.70       | 0.67   | 0.73   |                                    |
| MDD (refractory) |                   | 0.57       | 0.52   | 0.6    | Sobocki et al., 2006 <sup>41</sup> |
| Well             |                   | 0.80       |        |        | Bansback et al.,                   |
|                  |                   | (SE: 0.01) |        |        | 201242                             |

**Note:** The observational period for the treatment trial is divided into two phases. The acute phase lasts three months and the maintenance phase could last 6 to 24 months.<sup>20</sup> In the model, the maintenance phase was assumed to last 9 months for the patients with a low risk of recurrence and 24 months for patients with a high risk of recurrence.

| Table A10: | Input | parameters | used in | the | mortality | module |
|------------|-------|------------|---------|-----|-----------|--------|
|------------|-------|------------|---------|-----|-----------|--------|

| Parameter                                                                            | Mean                                              | Source                             |
|--------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|
| All-cause mortality rate in<br>"Well" health state                                   | Age- and sex-dependent background mortality in BC | Statistics Canada <sup>34</sup>    |
| Risk ratio of mortality with<br>episodic MDD compared with the<br>general population | 1.58                                              | Cuijper et al., 2013 <sup>32</sup> |
| Hazard ratio of mortality with<br>refractory MDD compared with<br>episodic MDD       | 1.29                                              | Li et al., 2019 <sup>33</sup>      |

## References

1. Ghanbarian S, Wong G, Bunka M, Edwards L, Cressman S, Conte T, et al. A Canadian simulation model of major depressive disorder (SiMMDep). [Under review] 2023.

2. Doktorchik C, Patten S, Eastwood C, Peng M, Chen G, Beck CA, et al. Validation of a case definition for depression in administrative data against primary chart data as a reference standard. BMC psychiatry. 2019;19(1):9-.

3. British Columbia Ministry of Health [creator] (2021): Medical Services Plan (MSP) Payment Information File. V2. Population Data BC [publisher]. Data Extract. MOH (2021). http://www.popdata.bc.ca/data

4. Canadian Institute for Health Information [creator] (2021): Discharge Abstract Database (Hospital Separations). V2. Population Data BC [publisher]. Data Extract. MOH (2021). http://www.popdata.bc.ca/data

5. British Columbia Ministry of Health [creator] (2021): Consolidation File (MSP Registration & Premium Billing). V2. Population Data BC [publisher]. Data Extract. MOH (2021). <u>http://www.popdata.bc.ca/data</u>

6. British Columbia Ministry of Health [creator] (2021): Vital Events Deaths. V2. Population Data BC [publisher]. Data Extract. MOH (2021). <u>http://www.popdata.bc.ca/data</u>

7. British Columbia Ministry of Health [creator] (2021): PharmaNet. V2. British Columbia Ministry of Health [publisher]. Data Extract. Data Stewardship Committee (2021). http://www.popdata.bc.ca/data

8. Canadian Institute for Health Information [creator] (2021): National Ambulatory Care Reporting System. V2. Population Data BC [publisher]. Data Extract. MOH (2021). http://www.popdata.bc.ca/data

9. Ferrari AJ CF, Norman RE, Patten SB, Freedman G, Murray CJ "Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010". PLoS Med. 2013;10(11).

10. Kessing LV. Severity of depressive episodes during the course of depressive disorder. Br J Psychiatry. 2008 Apr;192(4):290-3.

11. Bousman CA, Zierhut H, Müller DJ. Navigating the Labyrinth of Pharmacogenetic Testing: A Guide to Test Selection. Clinical pharmacology and therapeutics. 2019;106(2):309-12.

12. Bousman CA, Bengesser SA, Aitchison KJ, Amare AT, Aschauer H, Baune BT, et al. Review and consensus on pharmacogenomic testing in psychiatry. Pharmacopsychiatry. 2021;54(01):5-17.

13. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clinical pharmacology and therapeutics. 2012;92(4):414-7.

14. Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clinical pharmacology and therapeutics. 2021;110(3):563-72.

15. PharmGKB. CYP2D6 Diplotype-Phenotype Table [Internet]. PharmGKB.org [Accessed Dec 8, 2022]. Available from: <u>https://www.pharmgkb.org/page/cyp2d6RefMaterials</u>.

16. PharmGKB. CYP2C19 Diplotype-Phenotype Table [Internet]. PharmGKB.org [Accessed Dec 8, 2022]. Available from: <u>https://www.pharmgkb.org/page/cyp2c19RefMaterials</u>.

17. Statistics Canada. Census Profile, 2016 Census, [Internet]. 2016 [Accessed May 15, 2021]. Available from: <u>https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/details/page.cfm?Lang=E&SearchText=British%20Columbia&SearchType=Begins&Sea rchPR=01&TABID=1&G=1&Geo1=PR&Code1=01&Geo2=PR&Code2=59&type=1&B1=Ethn ic%20origin.</u>

 Hardeveld F, Spijker J, De Graaf R, Nolen WA, Beekman AT. Recurrence of major depressive disorder and its predictors in the general population: results from the Netherlands Mental Health Survey and Incidence Study (NEMESIS). Psychol Med. 2013 Jan;43(1):39-48.
 PharmGKB. PharmGKB Biogeographical Groups [Internet]. PharmGKB.org [Accessed

May 16, 2023]. Available from: <u>https://www.pharmgkb.org/page/biogeographicalGroups</u>.

20. Kennedy SH, Lam RW, McIntyre RS, Tourjman SV, Bhat V, Blier P, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 3. Pharmacological Treatments. Can J Psychiatry. 2016 Sep;61(9):540-60.

21. Bunka M, Ghanbarian S, Riches L, Landry G, Edwards L, Hoens AM, et al. Collaborating with Patient Partners to Model Clinical Care Pathways in Major Depressive Disorder: The Benefits of Mixing Evidence and Lived Experience. Pharmacoeconomics. 2022 Oct;40(10):971-7.

22. Bousman CA, Wu P, Aitchison KJ, Cheng T. Sequence2Script: A Web-Based Tool for Translation of Pharmacogenetic Data Into Evidence-Based Prescribing Recommendations. Frontiers in pharmacology. 2021;12:636650-.

23. Hicks JK, Sangkuhl K, Swen JJ, Ellingrod VL, Müller DJ, Shimoda K, et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clinical pharmacology and therapeutics. 2017;102(1):37-44.

24. Hicks JK, Bishop JR, Sangkuhl K, Müller DJ, Ji Y, Leckband SG, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clinical pharmacology and therapeutics. 2015;98(2):127-34.

25. Bousman CA, Stevenson JM, Ramsey LB, Sangkuhl K, Hicks JK, Strawn JR, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clinical pharmacology and therapeutics. 2023.

26. Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Focus. 2018;16(4):420-9.

27. Komossa K, Depping AM, Gaudchau A, Kissling W, Leucht S. Second-generation antipsychotics for major depressive disorder and dysthymia. Cochrane Database of Systematic Reviews. 2010 (12).

28. Wiles N, Thomas L, Abel A, Ridgway N, Turner N, Campbell J, et al. Cognitive behavioural therapy as an adjunct to pharmacotherapy for primary care based patients with

treatment resistant depression: results of the CoBalT randomised controlled trial. The Lancet. 2013;381(9864):375-84.

29. Ontario. HQ. Repetitive transcranial magnetic stimulation for treatment-resistant depression: an economic analysis. 2016;16(6):1-51.

30. Bunka M, Wong G, Kim D, Edwards L, Austin J, Doyle-Waters MM, et al. Evaluating treatment outcomes in pharmacogenomic-guided care for major depression: A rapid review and meta-analysis. Psychiatry research. 2023:115102.

31. CIHI. Inpatient Hospitalization, Surgery and Newborn Statistics [Internet]. 2019-2020 [Accessed Sep 16, 2022]. Available from: <u>https://www.cihi.ca/sites/default/files/document/dad-hmdb-childbirth-2020-2021-data-tables-en.xlsx</u>.

32. Cuijpers P, Vogelzangs N, Twisk J, Kleiboer A, Li J, Penninx BW. Differential mortality rates in major and subthreshold depression: meta-analysis of studies that measured both. Br J Psychiatry. 2013 Jan;202(1):22-7.

33. Li G, Fife D, Wang G, Sheehan JJ, Boden R, Brandt L, et al. All-cause mortality in patients with treatment-resistant depression: a cohort study in the US population. Ann Gen Psychiatry. 2019;18:23.

34. Statistics Canada. Life expectancy and other elements of the complete life table, threeyear estimates, Canada, all provinces except Prince Edward Island [Internet]. 2022 [Accessed Sep 22, 2022]. Available from:

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310011401.

35. Zivin K, Kim HM, McCarthy JF, Austin KL, Hoggatt KJ, Walters H, et al. Suicide mortality among individuals receiving treatment for depression in the Veterans Affairs health system: associations with patient and treatment setting characteristics. Am J Public Health. 2007 Dec;97(12):2193-8.

36. Maruf AA, Fan M, Arnold PD, Muller DJ, Aitchison KJ, Bousman CA. Pharmacogenetic Testing Options Relevant to Psychiatry in Canada: Options de tests pharmacogenetiques pertinents en psychiatrie au Canada. Can J Psychiatry. 2020 Aug;65(8):521-30.

37. BC Government. MSC Payment Schedule - Updated Nov 1st, 2020. 2020.

38. Health employers association of BC. Knowledge Management Estimated Annual Compensation for Select Occupation Groups: 2020 [Internet]. [Accessed Sep 27, 2022]. Available from: <u>https://www.heabc.bc.ca/Page26.aspx#.YzI7kHbMK70</u>.

39. CIHI. Patient cost estimator [Internet]. Ottawa, ON: CIHI; 2016 [Accessed Aug 31]. Available from: <u>https://www.cihi.ca/en/patient-cost-estimator</u>.

40. Kolovos S, Bosmans JE, van Dongen JM, van Esveld B, Magai D, van Straten A, et al. Utility scores for different health states related to depression: individual participant data analysis. Qual Life Res. 2017 Jul;26(7):1649-58.

41. Sobocki P, Ekman M, ÅGren H, Runeson B, JÖNsson B, Sahlgrenska a, et al. The mission is remission: health economic consequences of achieving full remission with antidepressant treatment for depression. International journal of clinical practice (Esher). 2006;60(7):791-8.

42. Bansback N, Tsuchiya A, Brazier J, Anis A. Canadian valuation of EQ-5D health states: preliminary value set and considerations for future valuation studies. PLoS One. 2012;7(2):e31115.